Helium Could Save Our Planet

Helium Could Save Our Planet

Helium could become the clean energy source of the 21st century. Colossal reserves could to be mined from the moon's surface and returned to Earth as a fuel for clean, green, radioactive-free power. So what are we waiting for?

Helium has a fascinating back story.

Here on Earth, helium is a rare resource derived from limited reserves of natural gas trapped in the Earth's crust. It has a handful of advanced medical and industrial applications, not to mention party balloons.

However, the Earth-shattering potential for helium lies in nuclear fusion: a technology not yet fully developed but promises abundant clean energy for centuries to come.

Scientists have long known that, despite its rarity on Earth, helium exists in abundance in space. There are thought to be vast reserves of the isotope helium-3 trapped just under the surface of the moon with a realistic potential for mining.

Its value as a nuclear power source pitches it at $3 billion per tonne, and even relatively small amounts shipped back to Earth could power entire countries year-round.

Combine the potential of lunar mining and nuclear fusion reactors and what have you got? An end to humanity's reliance on non-renewable fossil fuels and protection for life on Earth from continued shifts in the global climate.

Such a transition is not only worth trillions in economic terms, but will pave the way for the next industrial and political superpower.

The helium rush is on.

How Helium is Created in Space

The universe is predominantly made up of hydrogen and helium as a result of the nuclear fusion that takes place inside stars.

As the two lightest elements, they are the building blocks of all heavier elements, which are simply an accumulation of more and more protons, neutrons and electrons.

Abundance of Elements in The Universe

Hydrogen, the most common element in the universe, makes up most of the stars in the night sky and of course our very own sun. It's usually composed of one proton and one electron (and zero neutrons; see my article Atoms 101 if you have no idea what I'm talking about).

Stars are hot. Really hot. And this energy has all the hydrogen atoms shooting around—with the eventual outcome of colliding into one another. Usually when this happens, they break apart.

However, sometimes the collision simply causes one proton to lose its positive charge and convert to a neutron, thanks to the weak nuclear force.

The result is an atom of deuterium: a stable isotope of hydrogen with one proton, one neutron and one electron. The collision also releases energy, ensuring stars stay hot, just as we puny humans like it.

But we still don't have helium yet, so how is helium created? Picture the hydrogen atoms and deuterium isotopes whizzing around inside the star (see below).

Eventually these collide too, giving us an isotope of helium-3 (by adding another proton to deuterium).

Finally, when two atoms of helium-3 smack together, we get an atom of helium-4, plus a couple of hydrogen atoms as a nice bonus.

Nuclear Fusion: Hydrogen to Helium

Hundreds of billions of stars are doing this in every galaxy, which is why there is simply a lot of helium hanging around in the cosmos. Not only is it rife inside stars, but it's also ejected on a massive scale and dispersed by solar winds, which is how it ends up in excess on the moon.

How Helium is Created on Earth

But Earth's magnetosphere protects us from solar winds and the accompanying helium bombardment. So how is helium created on Earth?

It all comes down to rock.

The radioactive decay of heavy elements such as uranium, thorium and radium emits alpha particles. And alpha particles, as Ernest Rutherford established, are essentially helium nuclei—just add electrons.

This process of decay, however, takes billions of years. Which is why helium is such a finite resource on our planet.

We can and do mine the tiny helium pockets in the Earth's crust. However, when formed in the upper mantle, helium is released by volcanic activity and lost into the atmosphere.

From there, it's so light that it escapes Earth's gravity with ease. Thus, each time we deploy the stuff in party balloons or industrial applications, a little more is permanently lost to space.

You can't normally see, smell or taste helium, but it does glow in an electric field.

The Discovery of Helium

Here's a cool story for you.

Helium was discovered in stars back in the 1800s with the use of a spectrometer. This is a tool which diffracts light, enabling the observer to measure the optical properties of any substance, near or distant.

A spectrometer exploits the fact that electrons have specific energies which differ according to their orbital. When an electron relaxes to a lower orbital it emits light which shows up as an emission spectrum.

Conversely, when an electron is excited to a higher orbital it absorbs light which shows up on the absorption spectrum.

As you can see below, different elements have different optical fingerprints, allowing us to identify them even from vast distances across space.

Absorption and Emission Spectrum of Hydrogen and Helium

Prior to 1868, astronomers observed the sun during an eclipse and saw the spectral fingerprint of hydrogen, as well as a second unknown element, assumed to be sodium.

When the French astronomer, Pierre Janssen, made his own observations during an eclipse in India, he found the yellow line didn't match up with the wavelength of sodium. He went ahead an invented the spectrohelioscope, allowing him to take repeat measurements without the need for an eclipse, and confirmed the spectral fingerprint of helium—not sodium—coming from the sun.

In the same year in England, the astronomer Joseph Lockyer was working on the very same incongruity, and came to the same conclusion that the second solar element was helium.

It was a complete fluke that their letters, which stated identical findings, reached the French Academy of Sciences within a couple of hours of each other.

The previously unknown (and allegedly extra-terrestrial element) they discovered was named helium, after the Greek god of the sun, Helios.

Fellow scientists showed a healthy scepticism about the findings and gave Lockyer and Janssen a hard time about it. But by 1881, the mysterious element helium was discovered in lava thrown up by an erupting Mount Vesuvius and the naysayers moved on hurriedly with their day.

Helium's Current Applications

Helium is mined from the Earth's crust for a range of applications.

It's lighter than air—which makes it ideal for inflating air ships, blimps and balloons. This gives it a reputation for fun and games, however huffing on helium gas is ill-advised as it can cut off the oxygen supply to the brain, cause embolisms, and burst the lungs, causing haemorrhage (especially if taken direct from a pressurised tank).

Why does helium make your voice go high? Helium molecules have less mass than the oxygen and nitrogen found in the air, so sound waves can travel through them three times as fast. The sped-up frequency gives you the adorable voice of a chipmunk. The opposite effect can be produced by inhaling sulphur hexachloride which is denser than air.

Meanwhile, a mixture of 8:2 helium and oxygen is used in the air tanks of deep sea divers and for people working under pressurised conditions. And helium-neon gas lasers are used to scan barcodes in supermarket checkouts.

The Large Hadron Collider in Switzerland uses helium to cool and strengthen its electromagnets to -271°C. These magnets keep the beams of particles on track as they race around the collision course at close to the speed of light.

A new use for helium is a helium-ion microscope (HIM) that gives better image resolution than even a scanning electron microscope (SEM).

Helium Ion Microscope (HIM) vs Scanning Electron Microscope (SEM)

Above: This fibrin matrix was coated with gold particles for SEM. No coating is necessary for HIM.

Helium is also valuable as a recyclable cooling agent for super-magnets in MRI machines, and is used in space programs to displace liquid fuel in rocket tanks.

So we already have a lot of important uses for helium.

Earth-Bound Helium is Non-Renewable

We're due to run out of helium on Earth in the next two decades. This is problematic because many of the existing medical and industrial applications have no viable alternatives.

But here's the bright side.

As you now know, the moon lacks a protective magnetic field and has been bombarded with helium-3 solar winds for billions of years.

There are an estimated 1.1 million tonnes of helium in shallow pockets just under the surface of the moon. Because helium is such a light element, that's even more than it sounds.

With the sufficient investment, scientists believe we could tap into the vast quantities of extra-terrestrial helium for use on Earth (as well as other soon-to-be colonised planets).

So how can we tap that resource and get the helium to where we need it?

Random Helium Fact: It has the lowest boiling point of all the elements at -269°C. Cooled a little more, liquid helium climbs the sides of a container and remains unmoving in a spinning container. It freezes at -272°C but requires 50,000 times the air pressure of your car tyres to do so.

A Quick Tangent: Fission vs Fusion

Besides our established uses, helium would be extremely valuable as a source of nuclear power. To appreciate this, we need to know the difference between nuclear fission vs nuclear fusion, and the benefits and risks of each technology.

Nuclear Fission vs Nuclear Fusion

Nuclear Fission

All commercial nuclear power plants use nuclear fission to split apart heavy isotopes like uranium or plutonium. The reaction generates heat which is turned into electricity.

However, nuclear fission comes with its drawbacks. Accidents like those at Three Mile Island (1979), Chernobyl (1986) and Fukushima (2011) reveal the serious and long term dangers of accidentally releasing large amounts of radiation into the environment.

What's more, the heavy elements required for nuclear fission are finite and non-renewable. They also produce radioactive nuclear waste as a by-product, even without the meltdowns.

It's fair to say that nuclear fission is not the safest nor the most sustainable source of energy for humanity.

Nuclear Fusion

In contrast, the dream of nuclear fusion has far greater appeal. And while we can't do it yet, it's a serious area of research among many nations, some of which have banded together for an international solution.

As opposed to splitting heavy atoms, fusion combines light atoms in high energy collisions, releasing large amounts of energy as a result. Not only is it more efficient than fission, but it's sustainable and produces virtually no radioactive waste.

Most nuclear research is geared toward the fusion of hydrogen isotopes (namely deuterium and radioactive tritium). The former is abundant in water and the latter is produced by the neutron bombardment of lithium. I'm sure we've all done it.

But the nuclear fusion scenario becomes even more attractive when you bring the non-radioactive isotope, helium-3, to the table.

Can We Use Helium for Nuclear Fusion?

Yes! But there are a couple of caveats.

First, getting two protons to fuse together (regardless of whether you're using hydrogen or helium isotopes) takes an awful lot of energy. It happens easily inside stars—but then they are giant balls of gas burning at millions of degrees Celsius.

Fortunately, physicists are making astonishing advances on this front.

In 2016, Germany switched on its Wendelstein 7-X stellarator for the first time, creating temperatures up to 80,000,000°C to generate hydrogen plasma. Further development is ongoing to create an environment for higher temperatures and longer discharges, to reach the goal of net power generation, making nuclear fusion a reality.

In 2017, construction of the multi-billion-dollar International Thermonuclear Experimental Reactor (ITER) in France reached the halfway point, on track for completion in 2025. ITER is a partnership of 35 countries which promises to be the first fusion device to create net energy.

Once we crack this nut, nuclear fusion with helium will be within our reach.

If you consider the moon within our reach, that is.

The International Thermonuclear Experimental Reactor (ITER) Nuclear Fusion Reactor

Above: The International Thermonuclear Experimental Reactor (ITER) Nuclear Fusion Reactor

Moon Mining

Nuclear fusion is longer an impossible dream. Now the only problem with the helium plan is sourcing the actual helium itself.

On the moon, helium-3 gas exists in vast quantities in the top few metres of the surface, making it a relatively easy operation to mine. The helium could be extracted by heating the lunar dust to 600°C before bringing it back to Earth, where it could power the entire planet for the next 200 years.

A fully-loaded space shuttle could carry 25 tonnes of helium, which is enough to power the US for one year. This puts its value at $3 billion per tonne, making the whole moon mining escapade look very attractive in economic terms, if not logistical ones.

And this is why helium could be our saviour.

When Will Moon Mining Begin?

China's Lunar Exploration Program, called Chang'e, is the most advanced project working towards mining the moon, targeting both titanium and helium resources. Named for the Chinese moon goddess, Chang'e runs an ongoing series of robotic missions that includes lunar orbiters, landers, rovers, and sample return spacecraft.

Chang'e intends to land crew on the moon's south pole by 2030. It has also revealed plans to build a sustained human outpost for mining operations, which would arguably lend China economic supremacy if breakthroughs in nuclear fusion are secured.

Meanwhile, American, Russian, and Indian scientists have urged governments to plan for lunar mining. And while some governments have toyed with the notion, there's little tangible progress to date. Perhaps the as-yet-unfinished nuclear fusion capacity makes lunar mining too speculative to attract serious funding.

Nonetheless, as peak oil, resource depletion and climate change rage on, there has never been more urgency to find new, alternative clean energy sources like helium.

Follow on Instagram Follow on Facebook
Becky Casale Bio

ABOUT THE AUTHOR: Becky Casale is the creator of Science Me. She's studying for a BSc and raising two small humans so parts of her DNA can live on a bit longer.