We're Going Multiplanetary

We're Going Multiplanetary

Stephen Hawking once said that humanity must colonise other planets in the 21st century if we want to avoid extinction.

His fears took the form of pandemics, nuclear war, asteroid impacts, and climate change. In order to avoid another Dark Age—or altogether extinction of the human species—we need to become a multiplanetary civilisation.

"You want to wake up in the morning and think the future is going to be great—and that's what being a spacefaring civilization is all about. It's about believing in the future and thinking that the future will be better than the past. And I can't think of anything more exciting than going out there and being among the stars." - Elon Musk
SpaceX Starship Illustration

Are We Ditching Earth Now?

No way. Earth is great; there's no chance we're leaving it behind as long as it's a viable home for humanity.

Perhaps the biggest criticism of becoming a multiplanetary civilisation is that it appears we've ruined Earth, and now we're dumping it and looking for more planets to ruin. The thing to consider here is timescale.

The agricultural and industrial revolutions of humanity have taken a huge toll on the environment and biodiversity. That really sucks. We've witnessed wide-scale extinctions at our own hands and we should, as a species, take responsibility for that.

On the broader scale, however, the third rock from the sun will still be here doing its thing for billions of years after we've gone.

In a few thousand years, the next glacial period will ravish the land—unrelated to humanity—creating catastrophic cooling, range contractions, and extinctions. It will last for 100,000 years.

We currently have no influence on that.

Planet Earth Cartoon

Humans are a blip on the geological timeline. And in order to help that blip thrive for longer, we must hedge our bets by establishing independent colonies on other moons and planets.

The plan is to distribute the eggs of humanity across many baskets, so a catastrophic basket loss won't commit our species to extinction.

If the dinosaurs had possessed this capacity, they'd have gone multiplanetary too. It's a matter of survival.

The Benefits of Earth

Life on Earth evolved over billions of years in specific environmental conditions.

Mammals, in particular, have had a presence that dates back 250 million years, in which we survived and adapted to the climate, atmosphere, resources, and competition on Earth.

Any alien world we plan to inhabit must offer similar conditions for our survival, or at the very least we must be able to recreate them with supplies drawn locally or shipped all the way from Earth.

Space, time, distance, and our own human frailties pose significant scientific challenges if we want to explore the final frontier.

Even back in the 1960s, Star Trek referred to terraforming—literally "Earth-shaping"—other worlds by modifying the atmosphere, ecology and surface topography to make them habitable for humans.

Terraform Mars

But this notion is merely hypothetical until we put it into practice and likely discover a whole host of unknown challenges on the job.

The Search for Earth-like Planets

In the last decade, NASA's Kepler space observatory has identified hundreds of new exoplanets, including some that might be a lot like Earth.

NASA's Kepler Space Observatory

They're all within decent limits of their respective suns and if they possess a stable atmosphere—where all water doesn't freeze or boil away—they may just be habitable.

Because humans are real suckers for sunshine and liquid water.

The area studied by Kepler represents just 0.25% of the night sky. And Kepler can only identify planets that happen to pass directly in front of their sun. They're too distant and too dark to be observed directly.

Instead, their transit creates a tiny dip in solar luminescence and this is the tell-tale sign of a planet in orbit. Planets that don't make any transits are simply invisible to us for now.

The prime candidate so far is Kepler-186f, some 490 light years away.

How far is that? Consider that the fastest space probe, Voyager 1, travels at 61,000 km/h (38,000 mph). At this rate our ideal planetary candidate has a journey time of just over 9 million years.

Even if that journey were possible, the species that steps onto Kepler-186f will be very different from the ancestral species that departed from Earth.

Advanced Humans on Another Planet Cartoon

Cosmologists reckon there are a theoretical 11 billion rocky planets orbiting Sun-like stars within our galaxy. But that tends to fall on deaf ears, seeing as their proximity to Earth makes them impossible candidates for our ends.

That is, unless we invent cosmic teleportation any time soon.

Candidates in Our Own Solar System

Our own solar system contains eight planets and 181 moons, some of which might offer us an alternative home-from-home.

Ideally, we'd start by terraforming some of these local worlds and not have to worry about speciation on the journey over.

So which of our solar system planets are viable habitats for humanity?

Closest to the sun are Mercury, Venus and Mars. They're similar to Earth because they're rock-based, and so earn the title of Terrestrial Planets.

The rest of our solar system is made up of the Jovian Planets: the gas giants Jupiter and Saturn, and the ice giants Uranus and Neptune.

Solar System Illustration

Mercury is the closest planet to the sun, orbiting at an average distance of 58 million kilometres. Too bad this means the surface heat and radiation is extremely intense; temperatures reach 426°C by day and -173°C by night. Even a lead-based sunblock would melt off your face, so Mercury probably isn't a goer.

Venus orbits further out at 108 million kilometres but is no more inviting. Day or night, north or south, surface temperatures remain a fierce 460°C on this hell ball. This is due to its thick carbon dioxide atmosphere which traps the Sun's heat as per the greenhouse effect.

The Red Planet

Mars has received a lot of our space-faring attention. To date, 40 attempts to send exploration vessels have resulted in 18 successful missions (if you define successful as not disappearing without a trace, crash landing, or breaking down soon after arrival). But that's par for the course: this is interplanetary exploration we're talking about. There are a lot of unknowns.

Elon Musk has set his sights on a manned mission to Mars in 2024 through his company SpaceX, initially to check on water resources and local hazards, as well as to establish mining, power and life support infrastructure. Colonisation will occur rapidly thereafter.

Mars City

But what will it be like for the first astronauts to travel to Mars?

Once we leave the protective shroud of the Earth's atmosphere and magnetic field, conditions in space become pretty inhospitable.

The Journey to Mars

We need an intricately well-designed and well-equipped spacecraft to overcome challenges as wide-ranging as baseball-sized space debris ripping through the hull, to safely disposing of astronaut poo.

So how far away is Mars? About six months. The distance between Earth and Mars varies due to their independent orbits, so the journey time really depends on when you set off.

How to Get to Mars

Mars last made a close approach to Earth in July 2018, bringing them 58 million kilometres apart. This is due to reoccur in October 2020. So there are predictable windows for which we can aim.

On average, though, the separation is more like 225 million kilometres. And these are just straight line measurements.

A realistic trajectory must take into account the continual movement of Mars and avoid passing too close to the sun. Luckily rocket scientists love working this stuff out so we can aim for those optimum six-month windows.

Mars-bound travellers need to deal with all and any issues that arise, without relying on real-time conversation with support crews on Earth. That's because communications are delayed by 3-22 minutes.

And then there's the physical and psychological isolation of space travel that helps drive the plot of every single space movie ever.

Astronauts are locked in to cramped conditions together with no escape for half a year, along with all the joys and pitfalls of weightlessness.

Alien taught us that in space, no-one can hear you scream. Although in a confined ship, your crew mates may beg to differ—and politely request you keep your psychosis to yourself.

Welcome, Future Martians

So, we've made it to Mars. What's it like living there?

To explore the psychological effects on the early Mars settlers, researchers have subjected volunteers to long stints in a fake Martian habitat on a mountain in Hawaii purely to test this premise.

Colonize Mars

But there are many more daunting physiological effects to consider, created by the vastly different physical conditions on Mars compared to Earth.

Mars is about half the size of Earth (but with the same amount of dry land) and takes almost twice as long to orbit the sun.

Both Mars and Earth have similar axial tilts which give rise to seasons on both planets. But unlike Earth, Mars is made chiefly of iron-rich rock and the resulting dust is what gives it the nickname of the Red Planet.

Vast dust storms—the largest observed in our solar system—can rage for months, sometimes covering the whole planet in a thick red shroud. This would wipe out solar powered equipment, necessitating the use of alternate energy sources, at least as a back up.

Adding to the dust problem is Olympus Mons, a massive active volcano that dwarfs our greatest mountains. Being a shield volcano with gently sloping sides, an observer on the ground wouldn't be able to see the entire profile of Olympus Mons, even from a distance.

In other words, Olympus Mons is so ridiculously big it curves visibly around the planet.

Olympus Mons vs Mauna Kea vs Mount Everest

When the dust on Mars settles, the sun returns—but at only half the size as it appears on Earth.

What's more, the Martian atmosphere is 100 times thinner than ours and is comprised of 95% carbon dioxide (vs our 0.04%). The rest of Martian air is made up of argon, nitrogen and 0.02% oxygen (vs our 21%).

Without specialised breathing equipment and oxygen supplies, humans on Mars would quickly suffocate.

Of course, science and technology are rising to meet the challenges posed by the Martian environment. Soon we will have devices that can extract oxygen from the plentiful supply of carbon dioxide in the Martian atmosphere, and this can be filtered into the habitats and resupply breathing apparatus.

The thin atmosphere means Mars can't retain heat or moisture, and levels of UV radiation are high. Any water is likely to be salty thus enabling it to avoid freezing or vaporising.

Temperatures are cold at an average of -60°C. Only in summer at the equator can it reach comfortable temperatures of 20°C, but this drops rapidly to -73°C by nightfall. (Nightfall, by the way, is the name of one of Isaac Asimov's greatest short stories, which he later developed into a novel, and you should totally check them out.)

Besides the risk of hypothermia after dark, the extra 38 minutes in each Martian day would cumulatively impact on your circadian rhythm, triggering sleep disruption and insomnia.

And cardiovascular problems and kidney stones are more likely because of the potential for dehydration and increased excretion of calcium from your bones.

That's because of the gravity problem. Mars has a mass of just 10% that of Earth, giving it around 38% of our gravity. In other words, if you weigh 80 kg (175 lbs) on Earth you'd only weigh 30 kg (60 lbs) on Mars. Moving around in Martian gravity would be awesome fun—but not without its downsides.

Your body is perfectly adapted to Earth's gravity, so on Mars your bones and muscles would quickly degrade. Not to mention that you just spent six months in zero gravity; by comparison Mars would actually make you feel pretty heavy.

Astronauts lose minerals from their bones with density falling by 1% per month. So without proper exercise and nutrition, you'd lose bone and muscle strength, and would have a hell of a time undergoing physiological rehabilitation after returning to Earth.

So while Mars is relatively "nearby" and "similar" to Earth in the grand scheme, colonising the planet poses tremendous challenges. These are explored to great effect in the National Geographic series Mars.

It's really cold, with low gravity, immense dust storms, and limited directly available oxygen. The first Martians will need to transport huge quantities of hardware from Earth and be extremely mentally and physically resourceful to survive.

Nevertheless, the race is on for governments and private companies to take humanity to Mars within the next few years.

Mars is happening—and sooner than you think.

"I'd like to die on Mars. Just not on impact." - Elon Musk

What About The Jovian Planets?

Let's think even bigger for a moment.

Mars could be our first home-from-home, but a true space-faring civilisation needs to establish itself on multiple planets, moons, asteroids and space stations.

Exploration missions have gone to the Jovian planets (Jupiter, Saturn, Uranus and Neptune) and some of their moons. Nine spacecraft have already travelled to Jupiter, sometimes using its gravity as a slingshot to even further flung destinations.

We've obtained some amazing images and scientific insights, coming to the realisation that these are not at all Earth-like planets.

Their very description as "ice" or "gas" giants provides the first clue as to how difficult their colonisation would be.

Jupiter is the largest planet in our solar system, with a mass 2.5 times greater than all of the other planets combined. The outer atmosphere comprises thick gas which has literally crushed exploratory spacecrafts under the pressure.

Eventually, Jupiter becomes liquid, and then solid at the very core. There, pressures are immense: estimated to be 50-100 million times that of Earth's pressure at sea level.

Jupiter doesn't rotate like the terrestrial planets. Made up of mostly hydrogen and helium gas, it spins faster at the equator than the poles. In fact, it has the fastest rotational speed in the solar system, producing 10-hour days and winds of 480 km/hour.

Its famous Great Red Spot is an area of high pressure: a continuous giant spinning storm first sighted in the 17th century. The storm itself is more than twice the size of Earth.

Jupiter's Red Spot

Don't Forget The Moons

Colonising such gas giants may well be impossible, but let's not forget about Jupiter's 69 moons, the most famous of which are the ice moons, Europa and Callisto.

In fact, scientists reckon the ocean underneath Europa's icy crust could well harbour life, since all the necessary conditions are present.

NASA has funded the initial development of a number of high-tech concepts including the amphibious squid rover designed to explore the deep oceans under Europa's ice.

A Squid Rover Exploring Europa's Ocean

So far, eight spacecraft have visited Europa and photographed 15% of its surface at a decent resolution. The surface is smooth, lacking craters thanks to the ocean currents continually recycling the ice.

Europa is also subject to deadly radiation on one face, so human habitats should be built on the protected opposite face.

Of course, there would be the chill-factor to deal with. The average temperature is -160°C at the equator and -220°C at the poles. Ice quakes would pose a hazard, as would the sudden explosion of violent water plumes from the ice.

The gravity on Europa is 13% that of Earth and it has no atmosphere—and therefore no weather.

The sky is always as black as night.

The View From Europa

Meanwhile, its fellow moon Callisto is also covered with ice and is the most heavily cratered object in the solar system, thanks to its ancient 4-billion-year-old landscape and lack of geological activity.


Like Europa, it too could support an ocean filled with cold-tolerant life forms. It's certainly an enticing driver to get a permanent human base set up on the surface in order to find out.

Going Multiplanetary

For the first time in 3.8 billion years, life on Earth is developing the capacity to explore and put down roots on other planets. It's not merely a giant leap for mankind, it's an advancement for all life that we take with us.

And I'm not just talking about domestic animals and lab mice—I'm talking plants, bacteria, and fungi, too. These fuel our life-supporting ecosystems on Earth and will be vital to our sustained nourishment on other worlds.

Once the life support infrastructure is established on Mars, Jupiter's moons, and beyond, going multiplanetary will be an option for millions of humans—including your own descendants who may already be alive today.

Becky Casale Bio

ABOUT THE AUTHOR: Becky Casale is the creator of Science Me. She's studying for a BSc and raising two small humans so parts of her DNA can live on a bit longer.